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Raman spectra of out-of-plane phonons in bilayer graphene
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The double resonance Raman spectra of the overtone of the out-of-plane tangential optical (oTO) phonon and
of combinations of the LO, ZO, and ZA phonons with one another are calculated for bilayer graphene. In the
case of the bilayer graphene, these Raman peaks are observed in the energy region between 1600 and 1800 cm−1.
We obtain results for both the fixed q = 0 and the dispersive q = 2k peaks of the overtones of the oTO phonon
of bilayer graphene. We calculate the double resonance Raman spectra of the combination modes coming from
the LO, iTO, LA, and iTA phonons in bilayer graphene. The calculated Raman peaks are compared with the
experimental results.
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I. INTRODUCTION

Resonance Raman spectroscopy has provided unique op-
tical properties for graphitic materials. From an analysis
of the Raman spectra, we get rich information on sample
characterization and the physical properties of graphene.1,2

So far, the strong resonance Raman spectra, for example, for
the G, D, and G′ (or 2D) bands have been mainly investigated
for the purpose of sample characterization of graphene.3–7

According to double resonance Raman scattering theory,8 it
is expected that many resonance Raman peaks appear in the
Raman spectra as overtone or combination modes. Although
such Raman peaks have weak intensity compared with that
of the G, D, and G′ bands, the information obtained from the
Raman spectra is very useful for characterizing the stacking
order of multilayer graphene.9,10

Graphene is an atomic layer of graphite and a two-
dimensional hexagonal lattice of carbon atoms. It is known
that the stacking order of multilayer graphene is either ABA
(hexagonal) or ABC (rhombohedral).11 Since some physical
properties which are relevant to the interlayer interaction
between graphene layers depend on the stacking order, the
Raman spectra for the out-of-plane phonon modes are very
important for providing information on the difference between
single-layer and bilayer graphene and between ABA and
ABC stackings. We know that the spectrum of the G′ band
become weak and broad with increasing numbers of graphene
layers.5 However, the integrated intensity of the G′ band does
not change much with an increase of number of graphene
layers. Raman spectra of the out-of-plane modes provide an
alternative way for determining the layer numbers.

The out-of-plane tangential optical (oTO) phonon of single-
layer graphene at the � point in the two-dimensional Brillouin
zone is not a Raman active mode due to the odd symmetry

for the mirror operation on a graphene plane. In fact, the
Raman peak of the overtone of the oTO phonon of single-layer
graphene is not observed. On the other hand, the Raman
band of the overtone of the oTO phonon of single wall
carbon nanotubes (SWNTs) is observed and is known as the
M band,12,13 since the cylindrical shape of SWNTs makes
the M band spectra Raman active. Similarly, the stacking
order of multilayer graphene makes the oTO mode Raman
active. Recently, some experimental groups observed the
Raman spectra in the frequency region between 1600 and
2200 cm−1.9,10 The Raman frequency depends on the laser
excitation energy (Elaser) and the number of graphene layers.
In the range between 1600 and 2200 cm−1, many weak Raman
peaks are observed in the Raman spectra of graphene with
different layer thicknesses and the Raman shift depends on
Elaser.14 Since the frequencies and intensities of these weak
Raman peaks depend on the number of layers of graphene too,
it is considered that the out-of-plane phonons around the �

point are relevant to these weak Raman peaks. Furthermore,
the double resonance Raman scattering process occurs within
the intravalley scattering process along the phonon energy
dispersion in the intermediate frequency region.12,13

In this paper, we discuss the calculated Raman shift and
intensity of the overtone and combination modes of the out-
of-plane phonons around the � point in order to evaluate and
assign the origin of the weak Raman peaks in the Raman
shift range between 1600 and 2200 cm−1. It is known that the
interlayer interactions of electrons between the upper and the
lower layers of bilayer graphene are weak compared with the
intralayer interaction.

In Sec. II, we present the method used for calculating the
Raman spectra for bilayer graphene. In Sec. III, we show
calculated results for the Raman spectra of the overtone of
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TABLE I. The force constants for single-layer graphene in units
of 104 dyn/cm by Furukawa (Ref. 16). The subscripts r , t i, and to are
radial, transverse in-plane, and transverse out-of-plane, respectively.

Radial Tangential

φ(1)
r = 39.83 φ

(1)
t i = 17.13 φ

(1)
to = 9.39

φ(2)
r = 7.98 φ

(2)
t i = −4.81 φ

(2)
to = −0.63

φ(3)
r = −5.53 φ

(3)
t i = 2.39 φ

(3)
to = 1.37

φ(4)
r = 1.45 φ

(4)
t i = 1.85 φ

(4)
to = −1.28

φ(5)
r = 0.77 φ

(5)
t i = −0.005 φ

(5)
to = 0.103

φ(6)
r = −0.519 φ

(6)
t i = −0.23 φ

(6)
to = −0.05

φ(7)
r = −1.45 φ

(7)
t i = −0.50 φ

(7)
to = 0.70

φ(8)
r = 0.92 φ

(8)
t i = 3.24 φ

(8)
to = −0.53

φ(9)
r = −0.20 φ

(9)
t i = 1.47 φ

(9)
to = −0.11

φ(10)
r = 0.85 φ

(10)
t i = −0.43 φ

(10)
to = 0.00

φ(11)
r = 0.18 φ

(11)
t i = −2.99 φ

(11)
to = 0.146

φ(12)
r = −0.56 φ

(12)
t i = 0.88 φ

(12)
to = −0.04

φ(13)
r = −0.26 φ

(13)
t i = −0.81 φ

(13)
to = −0.05

φ(14)
r = −0.031 φ

(14)
t i = −0.06 φ

(14)
to = 0.03

the oTO phonon and for the combination of the LO, ZA, and
ZO phonon modes near the � point of bilayer graphene. In
addition, we show calculated results for the combination of
the LO, iTO, LA, and iTA phonon modes near the � point of
bilayer graphene. In Sec. IV, a summary is given.

II. CALCULATION METHOD

We use the extended tight binding (ETB) method for calcu-
lating the electron energies and the wave function coefficients.
The phonon frequency and eigenvectors are calculated by
using the force constant models proposed by Furukawa for
in-plane modes16 and by Jishi and Dresselhaus15 for the
out-of-plane modes, which are shown in Tables I and II,
respectively.

Here we focus our attention on the optical and acoustic
out-of-plane phonons of AB stacked bilayer graphene.15,17–19

As shown in Fig. 1, there are four out-of-plane phonon modes
for bilayer graphene: the out-of-plane acoustic (ZA) and
breathing (ZO) modes, and the antisymmetric (oTO−) and
symmetric (oTO+) tangential optic phonon modes. The oTO−
phonon is the lower frequency phonon mode at the � point
around 886.5 cm−1. On the other hand, the oTO+ phonon is
the higher frequency mode at the � point around 887.0 cm−1.
The energy difference between the oTO− and oTO+ phonons
at the � point is 0.5 cm−1. The phonon eigenvectors of the
lower frequency oTO− phonon are the antisymmetric vibration
between the upper and lower layers of bilayer graphene upon

TABLE II. The out-of-plane force constants of graphite by Jishi
and Dresselhaus (Ref. 15). The units are 104 dyn/cm.

Neighbor 1st 2nd 3rd 4th

Radial 0.27469 0.059552 −0.047388 0.02
Tangential −0.59341 0.12712 0.04739 −0.09278
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FIG. 1. The lattice vibration of the four out-of-plane modes for
bilayer graphene. Here the out-of-plane acoustic mode (ZA) (a), the
breathing (ZO) mode (b), the symmetric mode (oTO+) (c), and the
antisymmetric (oTO−) (d) tangential optic phonon modes.

the inversion operation at the center point between the A1

and A2 atoms. Since the vibration of the oTO+ phonon is
symmetric, it is expected that the electron-phonon matrix
element has a nonzero value in the double resonance Raman
scattering process. Since the interlayer interaction is weak,
the Raman intensity of the overtone of the oTO phonon is
relatively weak compared with the intensities of the G, D, and
G′ bands. The other out-of-plane vibrational modes are the
ZA and ZO modes. Here the breathing mode (ZO) means that
two carbon atoms in the same graphene layer of the unit cell
move in phase, while the phase of the vibrations for the two
atoms are opposite to each other for the adjacent layers. From
the observed Raman shifts between 1600 and 2200 cm−1 and
the phonon dispersion relation around the � point,9,14 it is
considered that the ZA and ZO phonons can be coupled with
the LO and iTO phonons as combination modes. Since the
values of the electron-phonon matrix elements of the ZA and
ZO phonons are as small as that of the oTO phonon, the Raman
intensities of the combinations of the ZA, ZO, LO, and iTO
modes are expected to be similarly weak in comparison to the
Raman intensity of the overtone of the oTO phonon. Moreover,
the Raman peaks of the combination modes of the ZA, ZO,
and iTO phonons appear close to the G band frequency and
come from the phonon dispersion near the � point. We focus
our attention on the combination modes of the ZA, ZO, and
LO phonons.

The double resonance Raman intensity is calculated by
using the following formula:5,20

I (ω,EL)

=
∑

j

∣∣∣∣
∑

a,b,ω1,ω2

Mop(j,c)Mph(c,b)Mph(b,a)Mop(a,j )

�Eaj (�Eaj − h̄ω1)(�Eaj − h̄ω1 − h̄ω2)

∣∣∣∣
2

,

(1)

where j , a, b, and c, respectively, denote an initial state in
the valence band, an excited state in the conduction band,
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FIG. 2. The phonon dispersion relation of bilayer graphene along
the �M line. The resonance point arrows for double resonance Raman
scattering are also shown, respectively. �M = 2π/

√
3a = 3.63a−1,

where a = 0.246 nm is the lattice constant of two-dimensional
graphite. The inset is the Brillouin zone of graphene.

a first scattered state, and a second scattered state of an
excited electron. Here �Eaj is the energy separation defined
by �Eaj ≡ EL − (Ea − Ej ) − iγ , where γ is a broadening
factor and we use a constant γ = 0.01 eV.5 Here EL, Ea , Ej ,
ω1, and ω2 are, respectively, the energies of the excitation
laser energy, an initial and excited electron energies, and
the two-phonon frequencies. The Raman shift ω is given
by ω = ω1 + ω2. The electron energy and wave function
coefficients are calculated based on the ETB method.21 Mop

is an electron-photon matrix element between the ground
and excited states.22,23 Mph is an electron-phonon matrix
element from an initial state (a,k), where a(k) is the band
index (wave vector), to a final state (a′,k′) coupled by the
νth phonon of the wave vector q(=k − k′), the frequency
ων(q), and the phonon eigen vector eν

q .24 A force constant
model is used for calculating the phonon dispersion.25 Here
we adopt Jishi’s force constants for graphite15 in order to
calculate the phonon dispersion of bilayer graphene. Figure 2
shows the resulting calculated phonon dispersion relation
along the �M line of bilayer graphene, where the M point
corresponds to 2π/

√
3a = 3.63a−1. Here a = 0.246 nm is

the lattice constant of two-dimensional graphite. Since we
consider only the phonon energy and eigenvector near the �

point in the Brillouin zone of bilayer graphene, it is assumed
that the out-of-plane force constants of bilayer graphene are
approximated by those of graphite. We also consider the
out-of-plane force constant sets to be multiplied by 1.03 in
order to fit the calculated phonon energy to the experimental
results. We further assume that the virtual electron state for
calculating the electron-photon and electron-phonon matrix
elements can be approximated by the initial or final electron
states of bilayer graphene.24 Hereafter, we mainly consider the
Raman spectra for AB stacked bilayer graphene.

III. CALCULATED RESULTS AND DISCUSSION

Figure 3(a) shows the calculated results for the double
resonance Raman intensity of the overtone of the oTO+
phonon (2oTO+) for the indicated Elaser range from 1.6 to
2.6 eV, respectively. It is noted that the calculated Raman
intensity for the overtone of the oTO− phonon (2oTO−) is
much smaller [∼0.05 of the tick mark used in Fig. 3(a)] than
that for the oTO+ phonon. In the case of the oTO− phonon,
the A1 and A2 (B1 and B2) carbon atoms of the unit cell move
in phase, and the phase between the A and B atoms is opposite
[see Fig. 1(d)]. Since the out-of-plane vibration of the oTO−
phonon is like the acoustic mode, Mph of the oTO− phonon
is almost zero. On the other hand, in the case of the oTO+
phonon, the A1 and B2 (A2 and B1) carbon atoms of the unit
cell move in phase. The out-of-plane vibration of the oTO+
phonon is like the optical mode between the upper and lower
graphene layers [see Fig. 1(c)]. This is the reason why Mph for
the oTO+ phonon has a nonzero value. Due to the symmetry
of the phonon vibration of the oTO phonon, we only find a
significant Raman intensity for the 2oTO+ mode in Fig. 3(a).

From the double resonance Raman scattering condition, two
Raman peaks, which are called the q = 0 and 2k peaks, appear
through the combination of backward and forward scattering
phonons.8,26 In Fig. 3(a), the left (right) peak corresponds to the
q = 2k (q = 0) peak for each Elaser value. The Raman shift
of the q = 0 peak does not change by changing the Elaser,8

while there is a dispersion observed for the q = 2k peak.
Fixed and dispersive peaks of the overtone of the oTO phonon
are observed in the Raman shift range between 1730 and
1770 cm−1.
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FIG. 3. The Raman spectra of (a) the overtone of the oTO+ phonon (higher energy branch), (b) the combination of the LO and ZA phonons,
and (c) the combination of the LO and ZO phonons near the � point of bilayer graphene in the laser energy range between 1.6 and 2.6 eV. The
Raman intensity for the 2oTO+ combination mode decreases with increasing laser excitation energies above 1.8 eV.
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FIG. 4. Raman shifts of combination modes as a function of Elaser.
Solid (open) symbols are for our calculation [experiment by Lui et al.
(Ref. 14)]. The symbols denote 2oTO+ (q = 0) (circles), 2oTO+

(q = 2k) (squares), LO + ZA (up triangles), and LO + ZO (down
triangles), respectively.

In Fig. 3(a), we can see that the Raman intensity of
the 2oTO+ decreases with increasing Elaser because Mel-ph

depends on the reciprocal lattice vector and Mel-ph decreases
with increasing distance from the K point.22,23 Furthermore,
the difference in the Raman shift between the q = 0 and
2k peaks increases with increasing Elaser. Figures 3(b) and
3(c) show the corresponding calculated results for the double
resonance Raman intensity of the combination of the LO and
ZA phonons (LO + ZA) and the LO and ZO phonons (LO +
ZO) as a function of Elaser from 1.6 to 2.6 eV, respectively.
There is a dispersive peak for each Raman shift in the range
between 1610 and 1730 cm−1. Both the Raman intensity and
the frequency shift for LO + ZO and LO + ZA increase
with increasing Elaser, because the LO intensity increases with
increasing Elaser.

Figure 4 shows the Raman shifts of Fig. 3 as a function of
Elaser. Solid (open) symbols are for the calculation (experiment
by Lui et al.14). Here we show the results for 2oTO+ (q = 0)
(circles), 2oTO+ (q = 2k) (squares), LO + ZA (up triangles),
and LO + ZO (down triangles) modes, respectively. The
dispersion of the calculated Raman spectra for the 2oTO+
(q = 0), LO + ZO, and LO + ZA combination modes
reproduces the experimental result well. However, there is no
correspondence between the calculation and the experiment
for the negative dispersive (q = 2k) peaks of 2oTO+ which
appear in the Raman shift range from 1730 to 1760 cm−1.
This dispersive peak intersects LO + ZO at Elaser = 2.6 eV in
Fig. 4. Thus, it is considered that this intersection of 2oTO+
(q = 2k) with the LO + ZO combination mode affects both
the peak intensities and the widths of the LO + ZO mode
at the crossing points. The experimental Raman intensities
are not strong in this spectral range. The assignment of the
2oTO (q = 2k) mode remains to be confirmed by future
experiments.

Next we show in Fig. 5 the Raman shifts for four possible
combinations of the LO, iTO, LA, and iTA phonons as a
function of Elaser using the same strategy as in Fig. 4. From the
experimental Raman spectra and phonon dispersion results of
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FIG. 5. (Color online) The relation between Elaser and the Raman
shifts. Black solid (blue open) symbols are for the calculation
(experiment) for bilayer graphene. Red open symbols are for the
experiment by Cong et al. for single-layer graphene.9 The symbols
denote LO + LA (circles), iTO + LA (squares), iTA + LO (up
triangles), and iTA + iTO (down triangles), respectively.

single- and bilayer graphene, it is considered that the origin
of the Raman peaks in Fig. 5 is the combination of the LO
and LA phonons (LO + LA) (circles), the combination of the
iTO and LA phonons (iTO + LA) (squares), the combination
of the iTA and LO phonons (iTA + LO) (up triangles), and
the combination of the iTA and iTO phonons (iTA + iTO)
(down triangles) within the intravalley scattering process,
respectively. Here we consider and calculate the Raman spectra
of the above combination modes of bilayer graphene in order
to demonstrate the origin of these peaks. Black solid (blue
open) symbols are for calculated values (experiments by Cong
et al.9) for the bilayer graphene in Fig. 5. Red open symbols are
for the experiment of single-layer graphene by Cong et al.9 The
results for the energy dependence of the calculated dispersion
curve are ωLO+LA = 211, ωiTO+LA = 167, ωiTA+LO = 154, and
ωiTA+iTO = 110 cm−1/eV, respectively. The values for the
dispersion in these peaks tend to agree with the experiment.
The Raman shift increases with increasing Elaser due to the
phonon dispersion around the � point. Moreover, a phonon
energy difference between the LA and iTA (LO and iTO)
modes can be determined from Fig. 5. In the experimental
Raman spectra, there is another Raman peak in the range from
1800 to 2200 cm−1. We expect that the weak Raman peak
LA + iTA corresponds to the intervalley scattering process
appearing in the range from 1800 to 2200 cm−1. The Raman
intensity calculation for the intervalley scattering process is
beyond the scope of this paper.

IV. SUMMARY

In summary, we show calculations for the double resonance
Raman spectra for the overtones of the oTO phonons and
for the combinations of the ZA, ZO, and LO phonons for
bilayer graphene. These double resonance peaks are not
observed in the Raman spectra from single-layer graphene.
However, due to the lattice vibration symmetry of bilayer
graphene, weak Raman peaks appear in the Raman spectra
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between 1600 and 1800 cm−1. Fixed q = 0 and dispersive
q = 2k Raman peaks appear in the Raman spectra of the
overtones of the oTO phonon. Moreover, we show calculated
results for the Raman spectra of the combination modes
coming from the LO, iTO, LA, and iTA phonons in bilayer
graphene.
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26L. G. Cançado, M. A. Pimenta, R. Saito, A. Jorio, L. O. Ladeira,
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